Dileptons in PHENIX

Deepali Sharma

for the PHENIX Collaboration

Stony Brook University

12th June, 2012

Outline

- Motivation
- 2 PHENIX experimental set-up
- 3 Cocktail generation
- Dileptons in PHENIX for various collision systems
- 3 The future: Hadron Blind Detector

Dilepton mass spectrum

Diverse physics signal

• Thermal radiation:

QGP
$$(q\bar{q} \rightarrow \gamma^* \rightarrow e^+e^-)$$

HG $(\pi^+\pi^- \rightarrow \rho \rightarrow e^+e^-)$

- light vector mesons and low-mass continuum: sensitive to chiral symmetry restoration that will appear as mass shifts, broadening or excess yield.
- open heavy flavor: thermal radiation and medium modification.
- quarkonia: suppression/enhancement of quarkonium production reveals critical features of the medium.

Modifications to the dilepton spectrum due to the OCD phase transition

PHENIX Experimental set-up

PHENIX Central arms Acceptance: -0.35< η <0.35, 2×90° in φ

Collision sysytems: **p+p**, **d+Au**, **Cu+Cu**, **Au+Au**

- Vertex: **BBC**
- Tracking: DC/PC1
- $p_e > 0.2 \text{ GeV/c}$;

Electron identification based on:

- RICH (Ring Imaging Čerenkov detector) (e/π) rejection >1000)
- EMCal (Electromagnetic Calorimeter) (E-p matching, e/π rejection ~ 10)

Cocktail of hadronic sources

- Hadron decays
 - Fit the π^{\pm} and π^0 data for a given collision system

$$E\frac{d^{3}\sigma}{dp^{3}} = \frac{A}{(e^{-(ap_{T}+bp_{T}^{2})} + p_{T}/p_{0})^{n}}$$

- For all other mesons, use m_T scaling: $p_T \rightarrow \sqrt{p_T^2 - m_{\pi^0}^2 + m_{hadron}^2}$ and fix normalization using the existing data where available.
- Charm, Bottom, Drell Yan from PYTHIA
 - For a given collision system use $N_{coll} \times$ $\sigma_{cc} = 567 \pm 57 \pm 193$ measured in p + pfrom single electrons.
- Put the ideal PHENIX acceptance filter.

What PHENIX has measured so far

Dileptons in PHENIX: p + p collisions

- Inclusive mass spectrum of e^+e^- measured from m = 0 to m = 8 GeV/ c^2 .
- · Very well understood in terms of
 - hadron cocktail at low masses.
 - heavy Flavor + DY at high masses
- Charm: integration after cocktail subtraction;

 σ_{cc̄} = 544 ± 39(stat) ± 142(sys) ± 200(model) μb (consistent with PHENIX single electron measurement)
- Simultaneous fit of charm and bottom;
 - $\sigma_{c\bar{c}} = 518 \pm 47(stat) \pm 135(sys) \pm 190(model)\mu b$
 - $\sigma_{b\bar{b}} = 3.9 \pm 2.4(stat) \pm_{-2}^{3} (sys)\mu b$

PLB 670, 313 (2009)

Dileptons in PHENIX: d + Au collisions (Minimum bias)

8/23

Dileptons in PHENIX: d + Au collisions (Minimum bias)

- Consistent with the expected cocktail of known sources both in low-mass and intermediate mass region.
- large mass range coverage $0 14 \ GeV/c^2$.
- Data will constrain known sources with better precison, e.g. bottom cross-section.

Deepali Sharma (Stony Brook University)

4 □ > 4 ⓓ > 4 ≧ > 4

Comparison of d + Au to scaled p + p data

- No excess in LMR.
- d + Au consistent with scaled p + p.

Intermediate mass region

- No excess in IMR.
- d + Au consistent with scaled p + p.
- J/ψ suprresion ~ 0.75 observed.

Dileptons in PHENIX: Au + Au *collisions*

Au + Au (PRC 79, 81 034911(2010))

Au + Au (PRC 79, 81 034911(2010))

- Strong enhancement of e^+e^- pairs at low masses: $(4.7 \pm 0.4(stat) \pm 1.5(sys) \pm 0.9(model)\mu b \ (0.15 \le m_{e^+e^-} \le 0.75 \text{GeV}c^2)$
- Characteristic properties:
 - Enhancement down to very low masses
 - Enhancement concentrated in central collisions
 - No enhancement in the IMR

Data/Cocktail

Low mass region: evolution with p_T

Comparison to theoretical models (Au + Au)

All models and groups that successfully described the SPS data fail in describing the PHENIX results

$$Au + Au$$
 (PRC 79, 81 034911(2010))
 $N_{part} = 109$

Cu + Cu (0-10%) $N_{part} = 98$

Centrality dependence of yields across different systems ordered by N_{coll}

Centrality dependence of yields across different systems ordered by N_{coll}

- Enhancement in low mass region is a strong function of centrality.
- Enhancement seen in both Cu + Cu and Au + Au systems.
- No excess is seen in d + Au

10⁻¹

10-1

Near future

The future: Hadron Blind Detector

- The present PHENIX results suffer from large systematic uncertainties.
- The S/B ratio in Au + Au (Run4) is $\sim 1/200$ at mass $m_{e^+e^-} \approx 500 \text{ MeV}/^2$.
- A Hadron Blind Detector was installed in 2009 to improve measurements in the LMR by reducing the combinatorial background.
- use opening angle cut to reject Dalitz decays and conversion pairs

The future: Hadron Blind Detector

Present status of analysis with HBD

- Uncorrected mass spectra in p + p and Au + Au with HBD
- Both analyses are expected to finish by QM

Summary

p + p and d + Au

- Both p + p and d + Au results are well described by the cocktail.
- No cold matter effects are seen in d + Au.

Au + Au and Cu + Cu

- The low-mass region in Au + Au shows an enhancement above the cocktail expectations: $4.7 \pm 0.4(stat) \pm 1.5(sys) \pm 0.9(model)$
- Theory models fail to describe the data.
- Enhancement is seen in Cu + Cu also.

Future: HBD analysis

Analysis of the data with HBD will provide a better precision measurement for the LMR.
 Results of this analysis are expected soon.

Back-ups

Star p + p dilepton data

STAR pp data, published JN/dmdY [GeV/c PHENIX cocktail into STAR acceptance: $\sigma_{cr} = 567 \mu b$ 10 m_{e*e} [GeV/c²]

PHENIX cocktail in STAR acceptance MC@NLO for heavy flavor resolution not tuned for STAR

STAR charm cross section $\sigma = 920 \mu b$

Star p + p dilepton data

STAR pp dielectrons STAR pp data, preliminary STAR pp data, published STAR pp data, published

Hadron Blind Detector - the concept

HBD concept

- Windowless Cherenkov detector (L=50cm)
- CF₄ as the radiator and detector gas.
- Proximity focus: detect circular blob and not ring.

Detector Element

- Triple GEM stack with pad readout.
- Reflective *CsI* photocathode evaporated on the top face of top GEM.

Hadron Blind Detector - the concept

HBD concept

- Windowless Cherenkov detector (L=50cm)
- CF₄ as the radiator and detector gas.
- Proximity focus: detect circular blob and not ring.

Detector Element

- Triple GEM stack with pad readout.
- Reflective *CsI* photocathode evaporated on the top face of top GEM.

Reverse Bias (HBD)

Forward Bias

This scheme exhibits a number of attractive features:

- A large $N_0 \approx 800 \text{ cm}^{-1}$ (ideal detector with no losses), due to a large bandwidth (from $\sim 6 \text{ eV}$ given by the *CsI* threshold to $\sim 11.5 \text{ eV}$ given by the CF₄ cut off).
- No photon feedback due to reflective photocathode.
- Hexagonal pads with size (area = 6.2 mm²) comparable to Cherenkov blob size (10.2 cm²), that results a single pad hit for hadrons, as compared to 2-3 pads per electron hit.
- Low granularity detector (~ 1000 pads per central arm acceptance).
- Primary charge of 5-10 e/pad leads to a moderate gain of 5000. This is a crucial advantage for the stable operation of a UV photon detector.

Deepali Sharma (Stony Brook University)

Hadron Blind Detector - the design

The Detector was designed and built at the Weizmann Institute.

- Two identical arms, with each arm equipped with 12 (23×27 cm²) triple GEM stacks. Each GEM stack is comprised of a mesh electrode, a top gold plated GEM for CsI and two standard *Cu* GEMs, and a pad electrode.
- Kapton foil readout plane: one continuous sheet per side with 1152 hexagonal pads. Also serves as a gas seal, leak rate is 0.12 cc/min.
- Low material budget: total < 3% X₀ (back plane electronics $\sim 1.5\%$, vessel $\sim 0.92\%$, gas $\sim 0.54\%$).
- $\bullet \sim 350$ gluing operations per arm.

